Search results

Search for "inkjet printing" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • deposited on the microneedle surface, has been mentioned. As in piezoelectric inkjet printing, the droplets are released from the nozzle as a result of the application of an electrical field to a piezoelectric crystal, which distorts and pushes the liquid out. The most important techniques applied in
PDF
Album
Review
Published 24 Oct 2022

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • films Benefiting from the advances of various film deposition techniques, such as one-step spin coating [13][21], two-step sequential solution deposition [22][23] and inkjet printing fabrication [24][25], unprecedented progress in the improvement of the efficiency of PSCs has been made. To obtain high
  • and spray coating PSC fabrication processes. Jiang et al. [34] solved this problem by successfully applying inkjet printing to deposit a flat and uniform CH3NH3PbI3 (MAPbI3) perovskite layer on a TiO2 film. Inkjet printing is a noncontact printing technique with direct control of material deposition
  • , which can lead to an overall reduction of material usage and waste. Mathies et al. [24] report the fabrication and optimization of multipass inkjet-printed PSCs. Here, the thickness and grain size of the perovskite films were controlled during multipass inkjet printing of a MAPbI3-ink yielding PSCs with
PDF
Album
Review
Published 06 Jan 2020

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • homogeneity [11]. Therefore, several strategies have been used for the deposition of MOF films [12], including direct growth [13][14], electrochemical deposition [15], inkjet-printing [16], dip-coating [17], layer-by-layer [18][19][20], Langmuir–Blodgett [21][22], chemical vapor deposition [23], spin-coating
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • ][60]. Recently, other methods emerged with the aim of producing SERS substrates at low cost, enabling their large-scale production. These methods include inkjet-printing and pen-on-paper approaches [61][62]. Plasma treatment has been widely used for the last decades for microelectronics and surface
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • the nanoscale, so far it has been inefficient in generating a hierarchical overlay structure at the micrometer scale. Here, we show that by combining block copolymer micelle nanolithography with inkjet printing, hierarchical patterns of gold nanoparticles in the form of microstructures can be achieved
  • in a high-throughput process. Inkjet printing was used to generate droplets of the micelle solution on surfaces, resulting in printed circles that contain patterns of gold nanoparticles with an interparticle spacing between 25 and 42 nm. We tested this method on different silicon and nickel–titanium
  • : biofunctional surfaces; inkjet printing; microstructures; nanolithography; nanoparticles; Introduction Many applications require well-organized micro- and nanoscale patterning of metallic nanoparticles. Examples include high-performance optics [1], multimodal waveguides [2], biosensors [3] and biomaterials [4
PDF
Album
Full Research Paper
Published 04 Sep 2018

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • -mediated synthesis [18][19][20], thermal decomposition [21], gamma, and electron beam irradiation [22][23], vapor phase deposition [24] and in situ synthesis through inkjet printing [25]. Such metal nanostructures are useful in inks for printed electronics (Figure 1). They are small enough not to limit
PDF
Album
Review
Published 07 Dec 2017

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • methods of 3DP are most common. Fused deposition modeling (FDM) involves heating a feed filament past the melting point of the material and extruding it onto a platform, which moves progressively downwards as layers are printed [8][9]. Inkjet printing deposits droplets of ink onto a platform, with ink
PDF
Album
Full Research Paper
Published 08 Aug 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • be incorporated into polymer–graphene nanocomposites [4], gaining the additional properties of the polymer matrix, in addition to easing handling and reducing cost. Equally important have been advances in bioprinting [5], such as micro-contact printing, laser direct writing, and inkjet printing
  • bridge formed between the substrate and dispenser tip. This allows for a broad range of viscosity of inks (up to 0.450 Pa·s), without concern for filaments/ligaments or satellite droplets. However, in order to assess the suitability of our ink for the more commonly used piezoelectric inkjet printing, we
  • behavior of an EG/water ink system over a wider range of Z values [14]. For Z values below 4, they observe that single drops are generated, but with long ligaments, thus requiring larger minimum standoff distances, resulting in greater error. Thus, while it should be possible to use our ink for inkjet
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

Nanotopographical control of surfaces using chemical vapor deposition processes

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 1250–1256, doi:10.3762/bjnano.8.126

Graphical Abstract
  • photolithography [13], microcontact printing [14] or inkjet printing [15] for instance. A second option is the spatially selective in situ activation of the initiator, which has been homogeneously coated on the substrate. Nishida and co-workers created patterns of activated photoinitiator by irradiation of the
PDF
Album
Review
Published 12 Jun 2017

Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO2 detection

  • F. Villani,
  • C. Schiattarella,
  • T. Polichetti,
  • R. Di Capua,
  • F. Loffredo,
  • B. Alfano,
  • M. L. Miglietta,
  • E. Massera,
  • L. Verdoliva and
  • G. Di Francia

Beilstein J. Nanotechnol. 2017, 8, 1023–1031, doi:10.3762/bjnano.8.103

Graphical Abstract
  • attractive for the applications in the field of sensing. Among the various methods for producing graphene over large areas, liquid phase exfoliation (LPE) appears to be very promising, especially if combined with inkjet printing (IJP), which offers several advantages, including the selective and controlled
  • , low-cost process that meets the requests coming from the increasing field of paper-based electronics and paving the way towards a flexible, green-by-design mass production. Keywords: aqueous graphene dispersion; gas sensors; inkjet printing; liquid phase exfoliation; nitrogen dioxide; paper-based
  • application to solution-processable deposition methods. These methods are more oriented towards large-scale production, such as printing technologies that stand out as high-throughput, low-temperature processes, also employable in roll-to-roll configuration. Among these technologies, inkjet printing (IJP) is
PDF
Album
Supp Info
Full Research Paper
Published 09 May 2017

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

  • Mykola Borzenkov,
  • Anni Määttänen,
  • Petri Ihalainen,
  • Maddalena Collini,
  • Elisa Cabrini,
  • Giacomo Dacarro,
  • Piersandro Pallavicini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2016, 7, 1480–1485, doi:10.3762/bjnano.7.140

Graphical Abstract
  • Chemistry, Center of Functional Materials, Åbo Academi University, Porthaninkatu 3-5, 20500, Turku, Finland Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy 10.3762/bjnano.7.140 Abstract Inkjet printing of spherical gold nanoparticles is widely applied in the
  • number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy. Keywords: gold nanostars; inkjet printing; localized surface plasmon resonance (LSPR); photothermal
  • effect; Introduction Due to advantages over other patterning techniques, inkjet printing technology has met important challenges to pattern a broad range of functional materials with promising biomedical application [1][2][3][4][5][6][7]. Inks based on metal nanoparticles are widely used in inkjet
PDF
Album
Supp Info
Letter
Published 19 Oct 2016

Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes

  • Ali Aldalbahi,
  • Jin Chu,
  • Peter Feng and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2012, 3, 415–427, doi:10.3762/bjnano.3.48

Graphical Abstract
  • [8][25][26][27][28][29]. For example, gellan gum-CNT dispersions have been wet-processed by inkjet printing into optically transparent films, which displayed sensitivity to water vapour [30]. Other commonly employed wet-processing methods used to process biopolymer–CNT dispersions into materials
PDF
Album
Full Research Paper
Published 23 May 2012
Other Beilstein-Institut Open Science Activities